Nutrition Aspects of Osteoporosis Care and Treatment

Cynthia Smith, FNP-BC, RN, MSN, CCD
Pars Osteoporosis Clinic, Belpre, OH.

Objectives
- To understand bone growth and development across the lifespan.
- To develop a better understanding of osteoporosis.
 - The pathophysiology of osteoporosis.
 - How osteoporosis is diagnosed.
 - The prevalence of osteoporosis in the United States and in WV.
 - Nutritional concerns.
Types of Bone

- **Cortical bone** (80% of the skeleton)
 - Makes up the shaft of the long bones and makes up the outer shell of all bones.
- **Cancellous (trabecular) bone** (20% of the skeleton)
 - “Shock absorbing bone” found in the vertebrae of the spine and at the end of long bones.

Bone Growth and Development

- Bone is a living tissue that is continuously being both built up and torn down (remodeling cycle).
- Every ten years, most of the skeleton has been remodeled.
Bone Growth and Development

- Involvement of two types of bone cells in the remodeling process:
 - Osteoclasts-remove old bone.
 - Osteoblasts-build bone.

Peak Bone Mass

- More bone is built up than destroyed for most individuals until their early 20’s.
- At this point, peak bone mass is reached or the strongest the bones will be.
Influences on Peak Bone Mass

- Hereditary Influences (70-80%)
 - Gender
 - Race
- Lifestyle Influences (20-30%)
 - Smoking
 - Excess intake of ETOH
 - Exercise
 - Fall prevention behaviors
 - Nutritional (calcium and vitamin D)

Changes in Bone Over Time

- Bone is significantly built up during the teenage years.
- Bone mass remains essentially the same until the 30’s to 40’s.
 - Bone loss starts to occur as more bone is broken down than is built up.
Changes in Bone Over Time

- With the onset of menopause, bone loss is accelerated.
 - This acceleration can last 5-10 years.
 - Some women can lose as much bone during the 5 years after menopause as they gained during their adolescence.

Effect of Age on Bone Mass

What is Osteoporosis?

Osteoporosis

• “Osteoporosis is a skeletal disorder characterized by compromised bone strength predisposing to an increased risk of fracture. Bone strength reflects the integration of two main features: bone density and bone quality.”

Normal Bone Versus Osteoporosis

Diagnosing Osteoporosis

- Use of the World Health Organization Classification.

 OR

- Having a fragility fracture (low trauma).
 - A fracture that occurs in a situation where a fracture normally wouldn’t have occurred or from a fall from standing height or less.
Evaluation of Bone Density

- Multiple tests available:
 - Peripheral quantitative computed tomography – primarily used in research.
 - Quantitative computed tomography - greater radiation exposure and requires concurrent use of a phantom scan with patient’s scan.
 - Quantitative ultrasound - formula required to calculate T-score equivalent.

Types of Bone Density Tests

- Radiographic absorptiometry - x-ray technique of hand which requires specialized equipment.
- Radiogrammetry - x-ray technique of the hand.
- Single x-ray absorptiometry - peripheral site measurement requiring the heel or forearm to be immersed in water.
- Peripheral energy dual x-ray absorptiometry (pDXA) - focused on forearm or heel.
The Gold Standard

- Dual energy x-ray absorptiometry (DXA):
 - Measures the axial skeleton (spine and hip(s)).
 - Can also measure aspects of the peripheral skeleton (forearm).
 - Can perform a total body assessment.
 - Able to perform a vertebral fracture assessment.

Acceptance of DXA:

- Low radiation levels.
- DXA (axial) measures areas of bone where the impact of bone loss will be seen more quickly.
- Shown to be effective in predicting fracture risk.
- Only method approved by Medicare for follow-up testing.
T-score

- Obtained through DXA testing.
- The T-score compares an individual's bone mineral density to the mean of a young normal reference group. The difference is expressed as a standard deviation score.

WHO Classification for Postmenopausal Osteoporosis

- **Normal:** T-score -1.0 and above.
- **Low bone mass (osteopenia):** T-score of -1.1 to -2.4.
- **Osteoporosis:** T-score -2.5 and below.
- **Severe or established osteoporosis:** -2.5 and below with fragility fractures.

Acceptance of WHO Classification Guidelines

- Osteoporosis Society of Canada
- International Society for Clinical Densitometry
- National Osteoporosis Foundation (United States of America)
- U.S. Preventative Services Task Force

Fracture Risk:

- Osteopenia increases the risk of a fracture two-fold while osteoporosis increases fracture risk four- to five-fold.

The Most Common Osteoporotic Fracture Sites

Development of Kyphosis

Fracture Estimates

- After age 50, one in two women and one in four men will have a fracture due to osteoporosis.
Fracture Consequences

- 20% of patients with a hip fracture die within a year of the fracture.
- One year after the fracture, 40% of patients have trouble walking without help.
- 60% have trouble doing necessary ADLs.
- 80% have trouble with some type of activity (i.e., driving).

Prevalence of Osteoporosis

- Nationally, ten million people have osteoporosis.
- Thirty four million have osteopenia.
WV Statistics

Gender by Percentage for WV in 200

- Male: 49%
- Female: 51%

Population of WV by age in 2008

- Younger than 65 yo: 84.3%
- 65 yo and Older: 15.7%

Prevalence of Bone Loss in WV

- Female:
 - Normal Bone Mass: 42.6%
 - Osteopenia: 36.0%
 - Osteoporosis: 21%

- Male:
 - Normal Bone Mass: 55.6%
 - Osteopenia: 37%
 - Osteoporosis: 7.4%

Select Osteoporosis Risk Factors for WV residents (Male and Female), 1999

Nutritional Influences

- Crucial Role of:
 - Calcium
 - Vitamin D
 - Other Micronutrients
How Patients Really Get Dietary Calcium

"The doctor said I need more calcium in my diet, so I'm switching from dark chocolate to milk chocolate."

Recommended Daily Intake of Calcium

<table>
<thead>
<tr>
<th>Age Range</th>
<th>Calcium Intake (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 6 months</td>
<td>210</td>
</tr>
<tr>
<td>6 to 12 months</td>
<td>270</td>
</tr>
<tr>
<td>1 to 3 years</td>
<td>500</td>
</tr>
<tr>
<td>4 to 8 years</td>
<td>800</td>
</tr>
<tr>
<td>9 to 18 years</td>
<td>1,300</td>
</tr>
<tr>
<td>18 to 50 years</td>
<td>1,000</td>
</tr>
<tr>
<td>Over 50 years</td>
<td>1,200</td>
</tr>
</tbody>
</table>

(A cup of milk or fortified orange juice has about 300 mg of calcium.)

Calcium Rich Foods

<table>
<thead>
<tr>
<th>Food</th>
<th>Calcium (mg)</th>
<th>% of Daily Value (1000 mg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ½ ounce cheddar cheese</td>
<td>306</td>
<td>31%</td>
</tr>
<tr>
<td>8 ounces of nonfat milk</td>
<td>302</td>
<td>30%</td>
</tr>
<tr>
<td>8 ounces whole milk</td>
<td>291</td>
<td>29%</td>
</tr>
<tr>
<td>2 cups of cottage cheese (1% milk fat)</td>
<td>276</td>
<td>28%</td>
</tr>
<tr>
<td>6 ounces of calcium fortified orange juice</td>
<td>200-260</td>
<td>20-26%</td>
</tr>
<tr>
<td>½ cup vanilla ice cream</td>
<td>85</td>
<td>8.5%</td>
</tr>
<tr>
<td>½ cup raw brocoli</td>
<td>21</td>
<td>2%</td>
</tr>
</tbody>
</table>

For Pregnancy/Lactation

- During pregnancy and lactation,
 - For those 18 yo and younger: 1300 mg/day
 - For those 19-30 yo: 1000 mg/day
 - For those 31-50 yo: 1000 mg/day
Calcium

- Don’t want to exceed 2000-2500 mg of calcium a day.
- If supplementation needed, the body absorbs about 500-600 mg at a time.
- If on an acid suppressing medication, calcium citrate supplementation a better choice.

Interferences to Calcium Absorption

- Oxalate: Found in foods such as beet greens, spinach, and rhubarb.
- Phytate Sodium: Legumes, 100% wheat bran.
- Excess Protein Intake
- Excess Caffeine Intake
- Excess Phosphorus Intake
- Excess Sodium Intake
Vitamin D

- Ways to obtain:
 - Food
 - Sunlight
 - Supplements/medication

Foods High in Vitamin D

<table>
<thead>
<tr>
<th>Food</th>
<th>Vitamin D (IU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 oz of baked herring</td>
<td>1775</td>
</tr>
<tr>
<td>1 cup orange juice fortified with calcium and vitamin D</td>
<td>259</td>
</tr>
<tr>
<td>1 cup nonfat milk</td>
<td>100-241</td>
</tr>
<tr>
<td>3 oz of baked salmon</td>
<td>238</td>
</tr>
</tbody>
</table>
Foods and Vitamin D

- Some cereals and soymilk are fortified with Vitamin D.
- Cheese, ice cream, butter, and most yogurts are not fortified with Vitamin D.

Vitamin D Recommendations

- Adults under age 50: 400-800 IU QD.
- Adults aged 50 and older: 800-1000 IU QD.
- Among experts, the safe upper limit of Vitamin D is debatable. Currently, 2000 IU/day of Vitamin D is thought to be safe.
Vitamin D toxicity

- Other than by taking a prescription dose of Vitamin D, it is felt to be difficult to get too much Vitamin D if the previous recommendations are followed.
- Vitamin D levels can be measured with a 25-hydroxyvitamin D blood test.

Other Nutrients

- Fluoride stimulates bone growth
- Iron, Cooper, Vitamin C, Vitamin K, Zinc, and Manganese seem to help in the formation of the bone matrix.
- Magnesium may help in building bone and with calcium processing.
Helpful Internet Resources

- National Institute of Health Osteoporosis and Related Bone Diseases-National Resource Center
 www.niams.nih.gov/bone
- Best Bones Forever
 http://www.bestbonesforever.gov/

Helpful Internet Resources

- National Osteoporosis Foundation
 www.nof.org
- West Virginia Osteoporosis and Arthritis Program
 http://www.wvbonenjoint.org/
Any Questions?

References

References

References

References

